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Abstract

This is the project report for University of Michigan course EECS470 Computer Architecture. We designed a 3-way
scaled, R10K based out-of-order processor with advanced branch predictor, prefetching and non-blocked DCache with
system verilog. The issue stage uses FIFO to help reduce clock cycle during reservation station selection.

I. Introduction

Building a processor of our own is the best introduction to computer architecture. It was a hard journey, especially
with a time limit of 6 weeks. Our out-of-order processor is not perfect and we haven’t realized all our wonderful
advanced features we planned when we started, but we still managed to make 3-way scalar, an advanced branch
predictor, prefetcher and non-blocking DCache working.

In this report, we will elaborate design choices, implementation and performance of the processor in detail. In part
II, we will give a overview of the processor and the design choices we made in this processor. In part III, details
about each module implementation is provided. In part IV, we provide some test data on and performance analysis
on bottlenecks, potential improvements and reflections.

II. Design Overview

We built an out-of-order, 32-bit processor based on the 3-way scaled R10K microarchitecture, with advanced branch
predictor, non-blocking cache design and prefetcher, as shown in Fig. 1. Our processor support 32 bits RV32IM ISA,
without fences, division, CSR operations and system calls.

In center is the main pipeline. Pipeline stages represented as blue boxes are separated by yellow pipeline registers.
From left to right there is fetch stage, dispatch stage, issue stage, functional units, complete stage and retire stage.
Apart from the pipeline, there are map table, physical register, free list, reorder buffer (ROB) and architecture
map table from the R10K design to record necessary data during out-of-order processing. On top of that, there are
instruction cache (ICache), store queue, data cache (DCache) and memory controller to deal with memory related
operations. Finally there is a branch predictor that feeds prediction to fetch stage and reduce precise stage interruption
cause by faulty branch direction. Critical specs of our design are listed in TABLE I.

TABLE I: Critical Design Spec

RS ROB PR FUs ICache Prefetcher SQ DCache BP
16 entries 32 entries 64 regs 3ALU, 2Load, 1Branch, 2Mult 256 Bytes 12 lines ahead 8 entries 256 Bytes 32 entries
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Fig. 1: Top-level Overview of our R10K based Processor

III. Basic Out-of-order Features

A. Fetch Stage

Our fetch stage has an embedded PC counter that records the next three instructions it is going to fetch. It forwards
its PC counter to the non-blocking ICache to require for the data. In return, the ICache gives fetch stage the data
and a valid signal immediately if it’s a cache hit, or otherwise returns a cache miss signal. Most of the time, the fetch
stage would increment each of the three entries of its PC counter by 12. However, there are exceptions. When there’s
a cache miss or the dispatch stage stalls, the fetch stage would set the first unfetchable instruction as the next first
instruction it will fetch. For example, if fetch stage wants to fetch instructions with PC 0, 4, 8 this cycle but PC 8
turns out to be a cache miss, it will attempt to fetch instructions with PC 8, 12, 16 in the next cycle. What’s more,
branch predictors can also overwrite the PC counter by asking the fetch stage to jump to a non-sequential PC.

B. Reservation Station

Our reservation station has 16 entries with no internal forwarding (An entry can’t be issued and dispatched into
in the same stage). The RS allocates new entries for newly dispatched instructions, watches on the tag broadcast
from complete stage and identifies the instructions that has no dependency that are ready to go and issue them. The
dispatch instructions has priority to be allocated at the rop of the reservation station while the issue selection logic
prioritise from the bottom of the reservation station. In that case, RS is more likely to issue older instructions first.

The 3-way scaled selection logic for 16 entries RS that consider multiple functional units assignment and stall is
very complicated and has a delay of 14ns. To reduce the delay without conpromising on the number of entries, we
only consider the type of functional unit and leave the assignment to particular functional unit in issue stage. In issue
stage, we build a first in first out (FIFO) queue for each kind of functional unites, and assign instructions at the head
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of the FIFO to each free functional units. The FIFO has internal forwarding, therefore the instructions don’t need
to wait one cycle before they are sent to the FUs when the queue is empty. These queue are 32 entries each and are
impossible to stall because they are larger than our ROB.

C. ROB

Our ROB has 32 entries with internal forwarding (an entry can be engaged when its previous instruction retires in
the same cycle). It enables the pipeline to handle precise states and saves all the information that retire stage needs
to know. It uses a head and a tail pointer to mark the first and the last non-empty entry. Both head/tail pointer can
move three entries at most per cycle to support three-way superscalar.

When a new cycle starts, the head pointer will move based on the number of completed instructions that are going
to be retired in this cycle. The tail pointer will then move based on the its distance from the updated head pointer
and sends structural stall if the left entry space is smaller than the number of instructions given by the dispatch stage.

The ROB saves and removes instructions based on the movement of head/tail pointer. When an instruction is
dispatched and saved in ROB, it sends out the entry index of that instruction. After an instruction is completed,
ROB uses its attached ROB entry index to set the complete flag high. Completed instructions are sent to the retire
stage in the next cycle.

The ROB saves the physical register and architecture register for the retire stage updating Map Table and Arch
Map Table. It also saves predicted direction/PC when the instruction is added to compare with the results of branch
execution. It sends precise state signal to retire stage if two results mismatch.

When a precise state happens, all ROB entries are cleared and head/tail pointers are set to zero by default.

D. Freelist

Our Freelist has 32 entries with internal forwarding. (a Physical Register can be used when it is freed in the same
cycle.) Its basic logic is the same as ROB with a head and a tail pointer pointing the first and the last available
Physical Register. Both head/tail pointer can move three entries at most per cycle to support three-way superscalar.

The Freelist size is designed to avoid structural hazards that only due to itself. Since the ROB has 32 entries at
most, it is not possible that the Freelist is empty before the ROB is full. So Freelist’s structural hazards are mostly
covered by RS/ROB’s structural hazards.

When a precise state happens, the tail pointer will move as usual to handle instructions that retire in that cycle.
The head pointer will set to the entry one after the tail pointer marking there are 32 available Physical Registers by
default.

E. Functional Units

Our design include 8 functional units: 1 branch resolves (1 cycle), 2 multiplying units (5 cycles), 3 arithmetic-logic
units (1 cycle) and 2 load units (3+ cycles). The branch resolver handles branches (B and J branches), the multiplying
unites handle multiplications (Our processor doesn’t support divide.), the load units handle load instructions and the
ALUs handle everything else. Note that our processor direct store instructions towards ALUs. The reason will be
explained in the following section talking about store queue.

F. Map Table & Arch Map Table & Physical Registers

A Map Table and an Architecture Map Table are implemented in order to perform register renaming in R10K
style. We have 32 architectural registers and 64 physical registers. The Map Table hold the register renaming map of
all dispatched instructions, and all incoming instructions can look up their operands. When a new cycle starts, the
Map Table entries will be updated one by one using dispatch results. It also support internal forwarding of the CDB



EECS 470 COMPUTER ARCHITECTURE, APRIL 2021 4

broadcast. (One update by CDB broadcast can be read by dispatch stage in one cycle.) The Architectural Map Table
holds the architectural state of Map table, it only updates for instructions that have retired.

When a branch misprediction happens, the Architectural Map Table will help rewind the state of the Map Table.
However, since we are implementing a 3-way superscalar processor, it’s a little more complicated because not all
instructions in this cycle may be cleared. So we reprocess the Architectural Map Table entries in retire stage and then
send it to Map Table, as shown in Fig. 1.

IV. Advanced High-performance Features

A. Prefetcher

Due to the fact that it takes multiple cycles to require data from memory and ICache and DCache might send
request to memory at the same cycle, it always takes a long time to get a new instruction. To improve this, a prefetcher
is implemented. It is triggered on every ICache reference. It automatically gets the next 12 lines of data from the
memory one by one, and writes them back to the ICache. The number 12 here is defined as a macro in our project.
The detailed analysis on the choosing of this number will be discussed in the analysis section later.

To prevent duplicate fetching from the same address, prefetcher always sends a signal to ICache when ICache wants
to request for data from the memory. This signal tells the cache whether a memory request of that address has been
sent to the memory.

B. Branch Predictor

Our branch predictor has a 32-entry directed-mapped buffer. It uses the least significant 5 bits as the entry index,
and the most significant 27 bits as the entry tag. It predicts branch instructions based on two-bit saturating counters
that consider new instructions as non-taken at the beginning.

When a branch instruction enters the fetch stage, it is passed to the branch predictor. If the instruction already
exists in the branch predictor buffer, the predicted direction and PC will be output to the if_id_register. Otherwise,
it is considered as non-taken. After the instruction is decoded in the dispatch stage, it will be passed to the branch
predictor if it is a branch instruction. The buffer will saves the new branch instruction if its corresponding entry is
empty or engaged by a different older instruction. The branch function unit will update the predicted direction and
PC when it completes a branch instruction and the branch instruction exists in the buffer.

To handle misprediction case, the prediction result of the branch predictor will be attached to the instruction and
saved in the ROB through the dispatch stage. The predicted direction and PC will be compared to the executed
direction and PC when the branch instruction is completed. If they don’t match, ROB will give priority to the
execution results and start a precise state process.

To handle dispatch stall and multiple branch prediction cases, the prediction results will be processed in the
if_id_register. If a branch is predicted taken, the same cycle instruction after it will be abandoned and the if_id_register
will not input new instructions from the fetch stage until the branch instruction finishes dispatching. If a precise state
or multiple branch prediction happens in the same cycle, only one branch prediction or precise state branch will be
processed. The fetch stage will give priority to the precise state, then the oldest branch instruction.

C. Store Queue

Store Queue is where memory store operations are stored and reordered to support precise state. In our design, we
chose 8-entry store queue with no internal forwarding. (One entry cannot be retired and then allocated in the same
cycle.) This is a rather simple implementation of store queue. Because of this implementation, every load instruction
need to wait until all the store instructions before it to execute. An interface with the reservation station ensures that
any load instructions won’t be issued until all the stores older than them are executed.

This simple implementation of store queue can be the system bottleneck especially for data heavy programs.
Fortunately, as we mentioned in the FU section, stores are handled by ALUs and need only one cycle to execute. The
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ALUs are unlikely to stall because there are three ALU who can take new instructions every cycle unless it needs to
wait other ALUs to complete first.

V. Memory Interface

A. Non-blocking Instruction Cache

The ICache is non-blocking and directly mapped. It’s size is 256 bytes with 8 bytes per line and 32 lines in total.
On a cache miss when the fetch stage requires data from it, it will send a request to the memory.

B. Non-blocking Write-back Write-allocate Directly Mapped DCache

We implemented a non-blocking, write-back, write-allocate, directly mapped data cache in this project. The data
cache uses a block size of 8 bytes, and has 32 entries in total, so it can contain at most 256B of data. We implemented
a miss status handling registers (MSHRs) to make the DCache be able to handle multiple misses at the same time.
The design of this MSHRs is explained in section V.C.

When a memory block to be written is found in DCache, the DCache is updated correspondingly. However, this
change does not go to the memory immediately. Instead, DCache will mark the block it just written as dirty. Dirty
blocks will be written back to the memory either when they are evicted or the whole program halts. This write-back
policy increases the hit rate and reduces the memory bandwidth consumed by storing. When a memory write misses,
the DCache will first load the corresponding block from the memory, then override the the part that we want to write
(since the RISC-V ISA supports different width of store), finally write this block data to DCache, allocating a new
block if needed. The specific method of doing this is explained below.

When a memory load hits, the data is directly transferred from the DCache to the Load functional unit. When a
memory load misses, the DCache will first load the corresponding block from the memory, then write this block into
DCache. Finally, the load hits and the data is transferred form the DCache to the Load functional unit.

Preserving the dependency of the memory accesses when designing a non-blocking write-allocate cache is a bit more
complicated. We used a series of strategies to prevent errors. Here is the strategy of handling the update of DCache
entries.

When a block of data should be written to the DCache, we will first look if the target cache entry(set) is valid.
If it’s still invalid, the data will be directly written to the target entry. If it’s already valid, we will then look if the
current tag in this target entry is the same as that of the data block we are going to write. If they are the same, then
we don’t need to evict the old block, we only need to override the write part of current update if it’s a store miss (if
it’s a load miss, do nothing). If they are not the same, we should evict the old block if it’s dirty by sending a store
request to memory, and then write the new block data to the target entry.

Furthur more, we use a special ”load hazard” detecting logic to guarantee that if a load access and any older missed
store access have the same block address, the load shouldn’t get the data until that store miss is handled. This design
is explained in section V.C.
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C. DCache Controller and Miss Status Handling Registers (MHSRs)

Fig. 2: Data Cache Controller for Memory Accesses

Since we have 2 load functional units, and at most 3 store requests per cycle, at most 6 memory requests (2 load
miss, 3 store miss and 1 evicted dirty block to write back) can come from DCache in one cycle but the memory can
only accept one, we implemented a MHSRs to help handle these memory accesses. Figure 2 is the data cache controller
we implemented to perform the memory access sequentialization and the special “load hazard” detecting.

The MHSRs is a first-in-first-out (FIFO) queue with three pointers: head, issue, and tail. In our design, it has
16 entries. The memory accesses between the tail pointer and the issue pointer are those which has been listed but
not yet sent to memory. The memory accesses between the issue pointer and the head pointer are those which has
been sent to memory but not yet committed. When a memory access is requested from DCache, a MSHR entry will
be allocated for it, and the tail pointer will increase 1 (if MSHRs is not full). When the entry that issue pointer is
pointing to is not empty, it will be send to memory and the memory responding tag will be stored in this entry. And
the issue pointer will increase 1 to issue the next entry in future cycles. When the entry that head pointer is pointing
to is a load and gets data from the memory, the processed data will go to DCache and update the corresponding
DCache entry. Then this entry will be cleared in the next cycle and the head pointer will increase 1 to commit the
next entry in future cycles. (If the entry that head pointer is pointing to is a store, it will directly be committed.)

The “dirty” bit in the MHSRs table is used to distinguish load accesses caused by load miss or store miss. If dirty
bit is 1, it’s a store miss, and the data to write is also stored in this MSHR entry, waiting to override the data loaded
from memory. If dirty bit is 0, it’s a load miss, and the data from memory will be directly send to DCache.

We also implemented a “load hazard” detecting logic to prevent getting wrong data if a load is coming after a
store miss with same block address. When a load request is sent from load functional unit to DCache, this logic will
compare all addresses in the MHSRs table with the current load, and it also detect the dirty bit to see if the entry
is a store miss. The load_hazard register has 16 bits, every bit is mapped to an entry of MHSRs table. So this logic
can keep detecting “load hazard” every cycle, and by adding an and gate, it could mask out all the younger store
misses and only keep tracking on the store misses existed before the current load comes.
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However, in our final code submission before due, this logic still has a problem so it can’t handle a tricky case. This
caused the test case “alexnet.c” failed when doing post synthesis simulation. Now we have fixed this bug and run all
the public test cases correctly.

D. Memory Controller

As discussed in previous sections, ICache and DCache both send reading requests to the memory, and DCache can
also write data to the memory. To decide which address is going to be read from or write to, the memory controller
is implemented. It places DCache’s priority before ICache. That is, when both ICache and DCache send a request to
the controller, it would forward DCache’s request to the memory and send a stall signal to ICache to tell it that the
memory is busy. In the reverse signal propagation direction, the controller just directly forwards the memory response
to ICache and DCache.

VI. Testing

This part gives an overview of our testing strategies and debug flow. Here future students doing this project might
find some advice and the starting point.

A. Test Strategy

Since team members implement different modules, each module is individually tested after they are implemented.
Both simulation and synthesis tests are applied to make sure the module functions correctly and doesn’t have over
complex logic.

Modules are integrated and tested spatially, for example Complete/Retire Stage, Map Table, Freelist, and ROB
are connected to see the changes when a instruction finishes execution. Testing spatially makes debug easier for later
overall integration.

The integrated pipeline is tested with the provided testcases and a visual debugger. After pipeline is able to pass
single testcases, a autotest shell script is designed to verify its performance on all testcases automatically.

B. Testbench

During the development, we had four types of testbenches: module tester, simulator, pipeline debug tester and the
final platform.

We started the project by developing each blocks and their corresponding testbenches. In these testbenches a basic
debug print task for the module is implemented. The testbenches feed in naive instructions and control signal to make
sure the modules work before we connect them to the pipeline.

To have the pipeline running and start testing before we have all the modules, we implemented several simulators
in cpp. Later we compared the result with the potentially buggy new module. Architectural map table, cache and
memory and the prefetcher are three main simulators that helped during our development.

The pipeline debug test is what we use for debugging and optimization. Here we combine the print tasks from the
module testbenches and add pipeline prints. We also generate debug output in the same style as project3 pipeline.out
so that we can diff the writeback values with the correct output from project 3 and locate bugs quickly.

The final platform is the one our processor runs on during final tests. It is a slim techbench that only outputs the
memory result and a debug print every 10000 cycles so that we know the simulation is still running.
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C. Autotest Shell Script

To test multiple testcases at one time, a shell script is written to compare our results and the correct outputs. It
compiles each testcase into binary code, runs simulation/synthesis, and only compares memory data.

It prints pass/fail outcomes to a autotest_result.txt file and saves our results of each testcase in an individual folder
for later debug.

D. Testing Results

For simulation, We run our pipeline on all testcases listed in Appendix. All runned testcases pass except alexnet.c.

For synthesis, We run our pipeline on all testcases except outer_product.c because it takes too long to run. All
runned testcases pass except alexnet.c.

Looking into our output of alexnet.c, we find that only one memory data is incorrect. We print out all the register
writeback value and they are also correct, so we infer that the problem is due to DCache’s interaction with memory.
Our decache fails to correctly handle some tricky scenarios and saves a wrong value to the memory.

Fig. 3: Wrong Memory Data of alexnet.c

VII. Performance Analysis

A. Performance Metrics

The most effective rule to evaluate the performance of a program is the iron law:

Performance =
#Instructions

Program
× #Cycles

Instruction
× Time

Cycle

= CodeSize× CPI × ClockPeriod

(1)

B. Overall Performance

We calculated Time Per Instruction of all testcases for our pipeline and the in-order pipeline of project 3. Here we
assume the clock period of the in-order pipeline of project 3, which is the latency of the memory access. The real
latency of the in-order pipeline should be the latency of the memory access plus the critical path of the pipeline itself.

Time/Instruction =
#Cycles

Instruction
× Time

Cycle

= CPI × ClockPeriod

(2)

The average time per instruction for the two versions are Time/Instructioncomplete = 71.07ns and
Time/InstructionP3 = 179.64ns. It can also be seen from Fig. 4 that the Time Per Instruction of all programs are
decreased significantly in our pipeline, indicating that our pipeline has a much faster instruction processing speed.
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Fig. 4: Time Per Instruction of Our Pipeline and In-order Pipeline

C. Prefetch

As described in Design Choices part, we implemented the number of lines to prefetch as a macro. By changing
the number to different value, we get different average CPI to finish running the public test cases. As shown in Fig.
5, when the number of prefetching lines increments from 2 to 4, the CPI drops significantly, which indicates a large
improvement in the performance. However, as the number keeps increasing, the CPI changes very slightly. It is due
to the fact that as the prefetcher accessing more to the memory, the larger probability it will interfere with the
DCache. And since in our design, the requests from DCache always have higher priorities than those from ICache and
prefetcher, the prefetcher cannot be fully utilized. Therefore, we should better change our prefetching lines to 4 or 6
so as to keep a good fetching performance and reduce the chances of conflicts to occur between ICache and DCache.
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Fig. 5: Average CPI Versus Different Numbers of Lines to Prefetch

We select and run some long .c testcases on our final pipeline version and a version without Prefetch and records
their CPI. It can be seen from Fig. 6 that with Prefetch, the CPI of most programs are decreased significantly,
espically for testcases like backtrack, bfs, dft, etc. The average CPI for the two versions are CPIcomplete = 2.22 and
CPIno_prefetch = 2.48. Though some testcases like insertionsort and omegalul have equal or higher CPI with our final
version, the increased CPI due to misprediction is relatively small. Those higher CPI are due to the probabilities that
prefether might overwrite old ICache blocks, thus changing an ICache access that should have been a hit into a cache
miss.

Overall, our Prefetch makes a distinguishable improvement on our pipeline CPI.

Fig. 6: Testcase CPI of Pipeline with/without Prefetch



EECS 470 COMPUTER ARCHITECTURE, APRIL 2021 11

D. Branch Predictor

We run all the .c testcases on our final pipeline version and a version without Branch Predictor and records their
CPI. It can be seen from Fig. 7 that with Branch Predictor, the CPI of most programs are decreased significantly.
The average CPI for the two versions are CPIcomplete = 2.84 and CPIno_BP = 3.30. Though some testcases like
backtrack and basic_malloc have equal or higher CPI with our final version, the increased CPI due to misprediction
is relatively small. These testcases may have more complex branch history that can not be handled by a two-bit
saturating counters, so a more advanced branch predictor can be used in the future.

Overall, our branch predictor makes a distinguishable improvement on our pipeline CPI.

Fig. 7: Testcase CPI of Pipeline with/without Branch Predictor

E. ROB/RS Sizes

Our ROB has 32 entries, while RS has 16 entries. Since RISCV ISA has 32 architectural registers, we have 64
physical registers in our design. The ROB and RS are the bottle neck of the pipeline. ROB often causes structural
stall when executing high latency instructions such as multiply, load, and store, while RS causes structural stall when
adjacent instructions have RAW dependencies on each other, especially when these instructions have high latency.

After adding the branch predictor, the density of instructions and the possibility of dependencies are both increased.
ROB and RS causes structural stalls more frequently.

However, increasing the size of ROB and RS will result in longer clock period because these two units communicates
with many other units back and forth. The final size we select is a balanced version between CPI and Cycle Time.

VIII. Our Test Case

We wrote a test case called testcase.c to test on multiple tricky memory accesses patterns to ensure our DCache
and LSQ is working correctly. We also tested on heavy branches to ensure that our ICache, branch predicter and
prefetcher works well.
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The test case is 6489 instructions long, and our processor get the correct output with a CPI of 1.907. The test case
code is attached in the appendix and it’s also submitted through git. Its name is “testcase.c” and it can found under
the folder “test_progs” in branch “our_testcase”.

This test case tests these listed tricky situations:

• load after store miss
• load - store - load to the same block
• load before store miss
• multiple store miss to the same block but writing different parts
• heavy dependency memory access series
• high density memory accesses
• frequent branch instructions
• frequent jumps to a certain function

IX. Further Optimization

After the final submission, we were able to fix some bugs and achieved a major clock period optimization on our
processor with little CPI compromise. We improved the clock period from 25 ns to 13.1 ns.

This version is on final-opt branch of the repository.

A. Fix Data Cache Load-Store-Load Bug

In the submitted version, public case Alexnet.c will fail at tricky DCahe access case: A load-store-load to the same
address. In the original version, cache hit will happen for the second load instruction while the store data is waiting
to be written in. We decided to stall any new load accesses if there is an awaiting store to the same address until the
store instruction in written to cache. After this quick fix, the new DCache is able to handle all public cases.

B. Critical Path Optimization

After careful clock cycle testing, we identified the critical path in our design. It starts with the complicated DCache
retire stall logic, which ensures that only one store miss instruction is allowed to retire. This logic needs data from
SQ, DCache and RoB and is quite complicated.

1) SQ Internal Forwarding Optimization: The critical path in our 25ns-clock submission starts from SQ head packet
that is sent to identify store miss in DCache, which decides Data Cache retire stall at ROB, and then goes to Retire
Stage, back to SQ head update logic, and then to dispatch SQ structural stall and ends in Branch Predictor.

SQ =⇒ DCache =⇒ ROB =⇒ RetireStage =⇒ SQ head update =⇒ SQ allocate stall =⇒ dispatchstall =⇒ BP

In order to break this chain, we cancelled SQ internal forwarding logic so that dispatch SQ structural stall doesn’t
depend on the complicated DCache retire stall logic. After applying this logic, we are able to reduce clock period from
25ns to 17ns.

2) DCache Repetitive Logic Elimination: The second longest path also starts with the DCache retire stall logic
but ends at updating MHSRS entries in DCache. After the SQ receives signal from retire stage that tell it how many
instructions to retire, it sends corresponding entries to DCache to store the data to memory. The DCache then checks
for cache misses and put missed instructions to MHSRS.

SQ =⇒ DCache =⇒ ROB =⇒ RetireStage =⇒ SQ retire entries =⇒ DCache miss =⇒ MHSRS

However, the retire entries sent to DCache are actually guaranteed to the first a few entries at SQ head, which we’ve
already checked for cache miss in DCache retire stall logic. The DCache only need to know how many instructions to
store at the SQ head.

By eliminating redundant cache miss logic, we are able to reduce clock cycle down to 13.1ns. Compared to the 25ns
clock version, our critical path optimization managed to achieve almost 2x performance improvement.
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C. Performance Analysis

We select and run a couple of long .c programs to examine the improvement of our optimization. The average time
per instruction for the two pipelines are Time/InstructionBefore = 71.07ns and Time/InstructionAfter = 38.35ns.
As shown in Fig. 8, the Time/Instruction of our pipeline after optimization is almost half of the original pipeline’s,
which means the performance of the pipeline is twice as good as the old one.

Fig. 8: Time Per Instruction of Pipeline Before/After Optimization

X. Team Logistics

• Juechu Dong (25%): Reservation Station(Optimization), Store Queue, Dispatch Stage, Issue Stage, Functional
Units (Except branch solver), Test Infrastructure, and Debugging

• Haoyang Zhang (25%): DCache, Memory Controller, Retire Stage, Map Table/Arch. Map Table, Branch FU, and
Debugging

• Xiangdong Wei (25%): Reservation Station(Issue Logic), Reorder Buffer, Freelist, Branch Predictor, Pipeline
Integration, and Debugging

• Chen Huang (25%): Reservation Station(Issue Logic), Fetch Stage, ICache, Prefetcher, Complete Stage, Pipeline
Integration, Test Infrastructure, and Debugging
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Appendix A
Public Testcase List

Here lists all the assembly and C programs we use to test our final pipeline.

• haha.s
• rv32_btest1.s
• rv32_btest2.s
• rv32_copy.s
• rv32_copy_long.s
• rv32_evens.s
• rv32_evens_long.s
• rv32_fib.s
• rv32_fib_long.s
• rv32_fib_rec.s
• rv32_halt.c
• rv32_insertion.s
• rv32_mult.s
• rv32_parallel.s
• rv32_saxpy.s
• sampler.s
• tj_malloc.h
• alexnet.c
• backtrack.c
• basic_malloc.c
• bfs.c
• dft.c
• fc_forward.c
• graph.c
• insertionsort.c
• matrix_mult_rec.c
• mergesort.c
• omegalul.c
• outer_product.c
• priority_queue.c
• quicksort.c
• sort_search.c
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Appendix B
Autotest Script Code

Fig. 9: Autotest Script Code

Appendix C
Our Test Case

testcase.c
1

2 i n t a [ 1 0 0 ] ;
3 i n t b [ 1 0 0 ] ;
4

5 i n t getSomeInt ( i n t n) {
6 i f (n < 2) {
7 re turn 100 ;
8 } e l s e {
9 re turn −100;

10 }
11 }
12

13 i n t main ( ){
14

15 f o r ( i n t i = 0 ; i < 100 ; i++)
16 {
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17 b [ i ] = i ;
18 }
19

20 // load a f t e r s t o r e : b [ 0 ]
21 b [ 0 ] = 9 ;
22 a [ 0 ] = b [ 0 ] ;
23

24 // load − s t o r e − load to the same block
25 b [ 3 ] = b [ 2 ] ;
26 a [ 1 ] = b [ 3 ] ;
27

28 // load be f o r e s t o r e :
29 i n t c ,d ;
30 c = b [ 4 ] ;
31 b [ 4 ] = 0 ;
32 a [ 4 ] = c ;
33

34 // mul t ip l e s t o r e miss to the same block but wr i t i ng d i f f e r e n t par t s
35 a [ 6 ] = 7 ;
36 a [ 7 ] = 8 ;
37 b [ 7 ] = a [ 6 ] ;
38 b [ 6 ] = a [ 7 ] ;
39

40 // heavy dependency
41 a [ 9 ] = b [ 1 0 ] ;
42 a [ 1 0 ] = a [ 9 ] + 9 ;
43 b [ 1 0 ] = a [ 9 ] ;
44 a [ 1 0 ] = b [ 1 0 ] − 8 ;
45 a [ 1 1 ] = b [ 1 0 ] + 89 ;
46 a [ 1 5 ] = a [ 1 1 ] ;
47 a [ 1 6 ] = a [ 1 5 ] − a [ 1 1 ] ;
48 a [ 1 5 ] = a [ 1 6 ] + a [ 1 5 ] ;
49

50 // high dens i ty memory a c c e s s e s
51 f o r ( i n t i = 0 ; i < 100 ; i++)
52 {
53 b [ i ] = a [ i ]+b [ i ]−a [ i ] ∗ b [ i ] ;
54 }
55

56 // branch
57 i n t n = 0 ;
58 f o r ( i n t i = 0 ; i < 30 ; i++) {
59 i f (n == 1) {
60 a [ n ] = getSomeInt (n ) ;
61 n++;
62 } e l s e i f (n == 2) {
63 a [ n ] = getSomeInt (n ) ;
64 n++;
65 } e l s e {
66 a [ n ] = getSomeInt (n ) ;
67 n++;
68 }
69 }
70

71 re turn 0 ;
72 }
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